

Introduction

LC-MS/MS is widely used to monitor immunosuppressive drug panels on a routine basis, for example for therapeutic drug monitoring of organ transplant patients.[1] Multiplexing is a popular approach to speeding the analysis time between individual samples. However, such techniques utilize a single electrospray probe and fast serial injections, typically requiring cumbersome wash cycles to ensure minimum carryover.[2] This poster reports a novel approach to multiplexing the immunosuppressant analyses using a single ion source equipped with two electrospray probes. Previous reports demonstrated linearity and use of two ESI probes in a single source for analysis of Vitamin D [3]. Here we demonstrate fast quantitation of Sirolimus, Tacrolimus, Everolimus and Cyclosporin A using Ascomycin and Cyclosporin D as internal standards.

Method

Sample and Preparation: The Tacrolimus, Sirolimus, Everolimus and Cyclosporin A standard stock solutions in liquid form were purchased from Cerilliant Inc (Round Rock, Texas) and stored at -4°C. Whole blood spiked samples were cleaned up by mixing one volume of serum with two volumes 0.1 M ZnSO4 precipitation solution containing the internal standards: Cyclosporin D (1234/1217) and Ascomycin (809.6/756.6). Three level QCs were purchased from UTAK (Valencia, CA). The mixture was vortexed for one minute followed by centrifugation for 15 min. The supernatant was transferred to a clean vial for quantitation.

LC-MS/MS Conditions: The LC-MS/MS was performed using an IONICS 3Q 120 triple quadrupole mass spectrometer (Bolton, ON Canada) with a Shimadzu UFLC system. 20 µL of supernatant were loaded on a porous R1/20 pretreatment column (30x2.1mm) for on-line washing with water for 0.25 minutes at a liquid flow rate of 3 mL/min, then eluted by an Imtakt Cadenza CD-C18HT analytical column (50x2.0mm, 3µm) at flow rate of 0.6 mL/min using Solvent A (water:methanol = 98:2, v/v, with 0.1% formic acid and 10mM ammonium acetate) and Solvent B (water:methanol = 2:98, v/v, with 0.1% formic acid and 10mM ammonium acetate)

Mass Spectrometry Conditions: Electrospray Voltage: 5000V, HSID: 150°C, Nebulizer Gas: 450, Drying Gas: 120, Heating Gas: 350, Source Temperature: 325°C.

The total LC cycle time for an injection is 3 min and the sample analysis time is 1.5 min with alternating injections from each LC. All the solvents used in this method are HPLC grade.

	Loading Pump		Eluting Pump	
Time (min)	Solvent A (%)	Solvent B (%)	Solvent B (%)	Valve Position
0.01	100	0	100	Washing
0.25	100	0	100	Eluting
1.3	100	0	100	
1.5	0	100	100	Washing
2.0	0	100	100	
2.1	100	0	100	
3.0	100	0	100	

Figure 1: LC Cycle Time

High Throughput Simultaneous Analysis of Immunosuppressants by ESI/ESI Dual Source Coaxial Flow Ion Source LC-MS/MS System

Sha Joshua Ye; Hui Qiao; Heather Gamble; John Tremblay IONICS Mass Spectrometry, Bolton, Ontario, Canada

ESI/ESI LC-MS Configuration

Figure 2: The LC-MS/MS Setup Used During the Development of this Method.

Figure 3: Injection Sequence

Figure 4: EIC Chromatograms of Compounds for QC Level I in Whole Blood Sirolimus (4 ng/mL) Tacrolimus (4 ng/mL) Everolimus (4 ng/mL) Internal Standard Ascomycin XIC:1220.0/1203.0 Cyclosporin (90 ng/mL) 1.4 Time (minutes) Internal Standard Cyclosporin D

Results

EIC Chromatograms

Calibration Curves

Results: This method covers a concentration range of three orders of magnitude from 0.2 to 200 ng/mL for Tacrolimus, Sirolimus, Everolimus and 2 to 2000 ng/mL for Cyclosporin A, while maintaining good linearity ($R^2 = 0.999$) with 1/x weighting. The intraday and interday variability for three levels QCs were all <7% and <11%, respectively. No interference or cross contamination was observed.

Name	MRM	QC 1	QC 2	QC 3
Tacrolimus	821.6/768.5	3.5 (9.4)	1.4 (2.0)	2.1 (0.8)
Sirolimus	931.6/864.5	5.6 (4.9)	5.2 (2.1)	3.0 (2.0)
Everolimus	976.7/908.7	6.6 (10.1)	3.1 (2.1)	3.5 (0.9)
Cyclosporin A	1220.0/1203	1.9 (7.5)	3.6 (1.9)	3.5 (1.0)

A sensitive, reliable and accurate LC-MS/MS method was developed and validated for quantification of Tacrolimus, Sirolimus, Everolimus and Cyclosporin A in whole blood. The use of an ESI/ESI novel dual source allows a sample analysis time of only 1.5 minutes, which doubles the throughput. This LC-MS/MS method requires simple sample preparation and is well-suited for routine therapeutic drug monitoring of immunosuppressive drugs.

Info@ionics.ca

www.ionics.ca

Figure 6: Intra and (Inter)-day Variability (%RSD)

Conclusion

Reference: [1] Christoph Seger¹, et al. A rapid HPLC-MS/MS method for the simultaneous quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human blood samples. Nature Protocols, Vol 4, 526-534 (2009)

[2] Vogeser M, Spöhrer U. Pitfall in the high-throughput quantification of whole blood cyclosporin A using liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med. 43(4):400-402 (2005).

[3] Sha Joshua Ye, et al, Method Development Time Reduction In Clinical Applications By Multiplexing Two HPLC Analyses Using a Dual Coaxial Flow Ion Source, 2011 ASMS meeting poster